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Abstract

Credit card fraud occurs when a malicious party, the fraud-
ster, makes unauthorized charges on a credit card. Fraud can
result in large losses, leading banks to adopt fraud detectors.
The use of these detectors can be costly; thus banks must be
strategic in deciding which payments to flag for review by the
detector. The flagging problem is how to balance costs of the
detector with potential losses from undetected fraud. To study
this problem, we introduce a flagging game played by bank
and fraudster nodes in a financial credit network. Our model
includes two types of banks, strong and weak, characterized
by the accuracy of their fraud detectors. Bank nodes select
a strategy that determines the probability each payment is
flagged and sent to the detector based on its various attributes.
Fraudster nodes select a strategy that sets the frequency and
value of attempted fraudulent payments. We analyze this flag-
ging game using empirical game-theoretic analysis to identify
strategic equilibria under various cost configurations. We find
that increasing costs of using the detector affects only strong
bank nodes, who flag fewer payments when costs are high.
Our analysis shows that the costs for weak bank nodes are
primarily from the liability for fraud committed, while the
cost of fraud detection plays a more important role for strong
bank nodes. We find the number of victims of attempted fraud
slightly increases when all payments are flagged compared to
the strategic flagging case.

1 Introduction
Credit card fraud occurs when a malicious party, the fraud-
ster, makes unauthorized purchases using a credit card that
does not belong to them. The fraudster may obtain the
card’s details in a variety of ways such as physically steal-
ing the card, or through methods such as electronic database
breeches. In 2020, $28.58 billion worldwide was lost to pay-
ment card fraud, which includes credit card fraud (Nilson
Report 2021). Losses are expected to increase in the future
with projected losses of $39.89 billion in 2025.

The majority of fraud losses are borne by card issuers.
As a result, many banks have developed systems for catch-
ing fraudulent charges, called fraud detectors. Much current
research focuses on the development and improvement of
these detectors. Our work complements this by seeking to
understand the decision context and broader effects of fraud
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detection on the payment system. Specifically, we note that
fraud detection often carries a cost for human and/or tech-
nical capital. Therefore, we are interested in studying how
such costs might impact the adoption of fraud detector tech-
nology and the resulting effect on patterns of fraud in the
network.

We introduce payment flagging as a bank action sending
a credit card payment to the fraud detector. Thus, the bank’s
flagging problem is, in an environment in which invoking
the fraud detector is costly, to decide which payments to
send to the detector. To investigate this problem, we develop
an agent-based model where fraudsters and customers route
payments through a banking network. Each bank node in our
model has access to its own fraud detector, which we treat
as a black box defined only by its accuracy and cost charac-
teristics. We refer to bank nodes with high fraud detection
accuracy as strong bank nodes and those with lower fraud
detection accuracy as weak bank nodes. Using the model,
we define a flagging game played by strategic bank and
fraudster nodes. Bank nodes decide which payments to flag,
trading off costs of missing fraud and using the fraud detec-
tor. Fraudster nodes decide the value of their payments and
how often to attempt fraud. We analyze the resulting game
under several cost configurations using empirical game the-
oretic analysis (EGTA) (Tuyls et al. 2020; Wellman 2016),
a method for identifying equilibrium configurations among
heuristic strategies using agent-based simulation.

From our experiments, we find that high costs for us-
ing the fraud detector deter strong bank nodes from flag-
ging many payments, but this is not the case for weak bank
nodes. This aligns with our analysis of the costs of fraudu-
lent payments in the environment. For strong bank nodes,
these costs are more balanced between liability costs and
costs of fraud detection than the costs for weak bank nodes,
whose primary costs are the losses from liability for fraud.
When compared to the scenario where banks flag all pay-
ments, we find customer nodes may be worse off due to
an increased number of customer nodes experiencing imper-
sonation attempts by the fraudster node.

2 Related Works
Previous work in the fraud detection space has focused
mainly on designing systems for detecting fraud more
quickly and accurately than human auditors. Methods for



fraud detection have evolved from rule-based to statistical
data mining and machine learning based techniques. Both
supervised and unsupervised models have been used with
supervised methods making use of labeled data sets and un-
supervised methods relying on techniques such as anomaly
detection (Ryman-Tubb, Krause, and Garn 2018; West and
Bhattacharya 2016). Recent literature focuses on leverag-
ing the power of deep neural networks for detecting fraud
(Lin et al. 2021; Zheng et al. 2020). To our knowledge, such
works do not incorporate possible constraints that might
limit the use of these systems.

In contrast, Dervovic et al. (2021), introduces the con-
straint of resources problem to fraud detection by enforc-
ing a constraint on the number of payments reviewed. They
investigate the problem of selecting a subset of jobs with
random arrival times, in which the decision to select a job
must be made immediately. Each job carries a reward for
being selected with the goal to maximize the total reward
received. The authors propose the Non-parametric Sequen-
tial Allocation Algorithm and test its effectiveness at select-
ing the most valuable fraudulent transactions using a public
fraud data set.

Prior work has used the credit network model to study
topics ranging from auctions (Ghosh et al. 2007) to liquid-
ity (Dandekar, Goel, and Govindan 2011; Dandekar et al.
2015). The model uses a directed graph of nodes connected
by weighted, directed edges representing the capacity for
connected nodes to transact with one another. The model
was extended by Cheng et al. (2016) to include interest rates
creating the financial credit model. We further extend this
model to include fraud edges to model credit card fraud in
the network.

3 Payment Model
3.1 Financial Credit Networks
The interactions between card-issuing banks and customers
are modeled using a graph based on the financial credit
network formalism (Cheng et al. 2016). The network con-
tains a set of nodes C = {1, . . . , n} representing customers
and a set of nodes B = {1, . . . , b} representing banks, with
b ≪ n. The nodes in the network are connected by a set of
weighted, directed edges E. Edge (i, j, debt , label , v) ∈ E
represents node i owing value v to node j. Debt edges rep-
resenting payments also include a boolean variable label de-
noting whether the payment is fraudulent (label = True)
or not (label = False). Edge (i, j, credit , v) ∈ E repre-
sents a node i extending a line of credit with value v to node
j. Such edges exist in our network only when i ∈ B and
j ∈ C or i, j ∈ B. Thus, credit can be extended only by
bank nodes. We refer to the total debt owed by node i to
node j as dij =

∑
(i,j,debt,label,v) v and the total credit node

i extends to node j as cij =
∑

(i,j,credit,v) v.
Banks extend credit to customers in the form of credit lim-

its on a credit card, which customers use to make payments
within the network as shown in Figure 1. In the first image,
bank node B1 has extended a line of credit to customer node
C1 of 100 units, denoted by the solid red edge. A similar re-
lationship exists between bank node B2 and customer node

Figure 1: Customer node C1 draws on its line of credit to
make a payment of 10 units to another customer node in the
network, C2.

C2. Customer node C1 then draws on its credit line to make
a payment to another node in the network, C2. The edges in
the figure show only the total debt, dij , and total credit, cij ,
values for compactness. As a result of drawing on its credit
line, C1 now owes a debt of 10 units to B1 represented by
the dashed blue edge from C1 to B1. The amount of credit
available to C1 to make additional payments in the network
decreases by the value of the payment as captured by the
value on the solid red credit edge from B1 to C1 decreasing
to cB1C1

= 90 units. To route payments for their customers,
bank nodes use a series of credit and debt edges connecting
all bank nodes to one another referred to as the interbank
network. We assume bank nodes in our model have an infi-
nite willingness to route payments for their customer nodes
and set the credit lines between bank nodes to an arbitrar-
ily large value. For simplicity, these credit edges are left out
of Figure 1. Bank node B1 routes the payment through the
interbank network to the payment receiver’s bank, B2, cre-
ating a debt between the banks equal to the value of the pay-
ment. Finally, C2 receives the payment as represented by the
debt edge from B2 to C2 with value dB2C2

= 10 units.

3.2 Fraudster
Our network also contains a set of nodes F = {1, . . . ,m}
representing the fraudsters. We refer to a fraudster node’s
use of a customer node’s credit line as impersonating the
customer node. The addition of a fraudster node adds a
new type of non-directed edge to the network (i, j, fraud , v)
where i ∈ F and j ∈ C. This edge denotes that fraudster
node i is impersonating customer node j and using j’s credit
line to make a payment of v units to some other customer
node in the network. We use fij =

∑
(i,j,fraud,v) v to repre-

sent the total value of fraud committed by i using j’s credit
line.

We model the fraudster nodes in our network as shown
in Figure 2. Bank node B1 has extended customer node C1

100 units of credit, which C1 has not yet used. The im-
personation of C1 by the fraudster node is represented by
the dotted black edge between fraudster node F1 and cus-
tomer node C1. When the fraudster node F1 impersonates
customer node C1 to make a payment to node C2, we repre-
sent the impersonation with a value of 10 units on the dotted
black edge between F1 and C1. Since the payment value and
receiver are the same as in Figure 1, the remaining changes
to the network appear the same. However, the debt edges
added to the network from C1 to B1 and from B1 to B2

have label = True , since this payment originated with the



Figure 2: Fraudster node F1 uses customer node C1’s credit
line to make a payment of 10 units to customer node C2.

fraudster node, not a customer node. Again, the edge values
in the figure show the total debt, credit, and fraud values as
in earlier examples and we omit the interbank credit edges
for simplicity.

4 The Flagging Game
We introduce our flagging game, which is played over T
time steps by banks and fraudsters in a financial credit net-
work. Fraudsters aim to maximize successful fraud volume
by selecting a strategy defining the frequency and value of
fraudulent payments attempted. Banks process credit card
payments on behalf of their customers, while addressing
the flagging problem. To do so, they select from a set of
strategies that determine the probability a given payment is
flagged, seeking to balance the cost of using the fraud detec-
tor and the cost of missing a fraudulent payment.

4.1 Initialization
The game begins with the initialization of bank, customer,
and fraudster nodes. As part of initialization, banks and
fraudsters select their strategies from the sets defined in Sec-
tion 4.4.

Bank Nodes Bank nodes are assigned a type, either
strong or weak, which dictates the bank node’s fraud de-
tection capabilities. Let γi denote the probability that bank
node Bi’s fraud detector accurately labels a payment. That
is, if a payment is truly fraudulent, Bi’s fraud detector would
label it fraudulent with probability γi, and as non-fraudulent
with probability 1 − γi. True non-fraudulent payments are
likewise labeled as such with probability γi. These val-
ues are drawn for each bank node on initialization, with
γi ∼ U [0.75, 0.9] if Bi is a strong bank node and if it is
a weak bank node, γi ∼ U [0.5, 0.65].

Customer Nodes We calibrate the payment behavior of
our customer nodes using the JP Morgan AI Research (JP-
MAIR) payments data for fraud detection synthetic data set.
The data set contains each payment’s sender, receiver, value,
and a variety of other variables for both fraudulent and non-
fraudulent payments. For our model, we use only the non-
fraudulent payments in the data set, leaving us with a set of
47,570 transactions.

We randomly select a subset of customers from the JP-
MAIR data set and associate them with customer nodes in
our network by datasetID. For example customer node C5

in our network may have datasetID = 127352 used only
for interaction with the data set. We then set a payment
frequency parameter, λ, for each customer node calculated

from the behavior of their assigned JPMAIR data set cus-
tomer. Customers nodes are also assigned to a bank node
uniformly at random. Customer node Cj is extended a line
of credit from its assigned bank node Bi, creating the edge
(Bi, Cj , credit , v = 2P ), where P is the total value of pay-
ments Cj’s datasetID sends in the JPMAIR data set.

Fraudster Nodes Fraudster nodes are initialized under the
assumption they could potentially compromise the credit
card information of any customer node and discover their
bank node assignments. Additionally, we assume the means
by which the fraudster obtains the credit card details does
not deter the customer from continuing to use their card
while undetected fraudulent transactions are made. Fraud-
ster nodes initially select a customer to impersonate uni-
formly at random.

Fraudster nodes are particularly inclined to use their
stolen credit card information to make payments to cer-
tain customer nodes. We refer to this set as the suspicious
set, TS , and initialize it by uniformly randomly select-
ing from all customer nodes in the network. The size of
TS is also uniformly randomly selected so that |TS | ∼
U{10, . . . , 20}. While the true identity of the suspicious set
is unknown to the banks, we assume they know that such
a group exists and have a noisy estimate of its size. Bank
nodes maintain their own estimates of the list, which we we
call a bank node’s perceived set, PS . The size of the per-
ceived set of bank node Bi is uniformly randomly drawn so
that |PS i| ∼ U{|TS |+1, . . . , |TS |+5}. The accuracy of a
bank node’s perceived list is based on the bank node’s type.
For each customer node in TS , a strong bank node Bi adds
the customer node to its set PS i with probability 0.9 and a
weak bank node adds it with probability 0.6. The remain-
ing spots in the set are filled by a random draw of customer
nodes in the network who are not members of TS .

Payment Queue Lastly, we initialize the payment queue,
which is used to track the schedule of payments to be at-
tempted in the network. Each slot in the queue is equivalent
to one time step in the game, thus the queue length is T . The
T time steps are comprised of alternating active and non-
active time periods, each of length A. Active time periods
are those in which the fraudsters are more likely to be active,
as described in Section 4.2 below. To initialize the queue, we
calculate each customer node’s initial arrival time using its
frequency λ and place them in the queue at the time of first
payment. Finally, we calculate the initial arrival time of each
fraudster node according to their selected strategy and place
them in the queue.

4.2 The Game
After initialization, the game proceeds with each time step
t consisting of the same set of steps: the next payment
sender is removed from the queue, a payment is created, the
sender’s bank node uses its strategy to make the flagging
decision, the payment is processed, and the sender node is
placed back in the queue for its next payment.

Customer Nodes We create customer node payments in
the network using the JPMAIR data set. For a customer



node, Ci, a payment sent by Ci’s datasetID is randomly se-
lected from the data set. The true network payment value is
drawn from a normal distribution with µ equal to the value
of this data set payment and σ = 10. The receiver of the
data set payment is not guaranteed to match a datasetID of a
customer node in our network, so we use a hashing function
to map the receiver’s ID to the index of a customer node in
our network. Specifically, the receiver in the network has an
index equal to datasetID mod n, where n is the number of
customer nodes in the network. For example, if the data set
has the payment received by a customer with the ID 128372,
the payment is routed to C172 in our network.

The payment is then processed by the customer node’s
bank node. The processing of a payment by bank node Bi

for its customer node Ci is completed as a series of steps.
1. If the payment’s value is larger than Ci’s total available

credit (v > cBiCi ), the payment attempt is terminated
and processing is complete.

2. Bi uses its strategy to determine the probability ρ the
payment is flagged.

3. The payment is sent to the detector with probability ρ and
with probability 1− ρ processing continues.
• If sent to the detector, the payment is correctly labeled

as fraudulent or not with probability γi.
4. If the payment is:

• not sent to the detector or labeled not fraudulent by
the detector, the payment is added to the network as
described in Section 3.

• labeled as fraudulent, the payment attempt is termi-
nated regardless of the true label.

The next arrival time of Ci is calculated as for initializa-
tion and Ci placed back in the payment queue.

Fraudster Nodes When a fraudster node attempts a pay-
ment, the value is determined from its selected strategy. The
strategy defines an interval, as described in Section 4.4, from
which the payment’s value is chosen uniformly. The receiver
of the payment is selected from the customer nodes in the
network such that with probability 0.8 the receiver is in the
suspicious set and with probability 0.2 the receiver is some
other customer node in the network. The attempted payment
is then processed as described for customer node payments
above.

The next arrival time, a, of the fraudster node is calcu-
lated subject to its selected strategy, as well as the designa-
tion of the time period a falls in. If a is calculated to be in
a non-active time period, then with a low probability (0.2)
we schedule the fraudster to arrive at a, and with remaining
probability (0.8) we calculate a new a. This process contin-
ues until we find a time in which we can schedule the fraud-
ster node in the queue. When a falls in an active time period,
the fraudster is always placed in the queue at a.

A fraudster node will select a new customer node to
impersonate only when the fraudster node’s previously at-
tempted payment is terminated by a bank node for any rea-
son. When selecting a new customer to impersonate, fraud-
ster nodes prefer to target bank nodes where they have his-
torically been most successful, but are indifferent between

customer nodes of such a bank. Therefore with 0.7 proba-
bility the fraudster node selects a random customer node of
the bank node where it has committed the most fraud, and
with probability 0.3 selects another customer node. For each
new customer node, the fraudster node chooses a new fre-
quency with which to make payments in accordance with its
selected strategy.

4.3 Payoffs
After T time steps, the fraudster and bank nodes receive pay-
offs based on the performance of their selected strategies.
Fraudster nodes receive payoffs equal to the total value of
fraud they commit in the network. Fraudster node Fi’s pay-
off is equal to:

payoff Fi
=

∑
j

fFij

The payoff to bank nodes is the sum of costs they are sub-
ject to given the presence of fraudster nodes in the network
with the best strategy minimizing these costs. Since bank
nodes are liable for fraud that occurs, the first cost is the
sum of the value of Bi’s undetected fraudulent payments,
which we write FC =

∑
j,j∈C

∑
(j,Bi,debt,label=True,v) v.

The second cost to bank nodes is attributed to employing
fraud detection measures. This can be broken into two sub-
costs, the first of which is the cost of sending a payment
through the fraud detector. We model this as a flat fee for
each payment, β, that represents costs such as paying em-
ployees or paying for the use of computer servers. Fraud de-
tection technology is also imperfect, causing the side effect
of inaccurately labeling a payment as fraudulent. These false
positives can create costs for credit card issuers in the form
of lost transaction fees and inconvenience to customers that
may translate to a loss of business for the bank. We define
α1 to represent the lost transaction fee, a percentage of the
payment’s value the bank node would have received if it had
not terminated the payment. The inconvenience to customer
nodes is modeled as a flat cost per terminated payment, α2.
Thus, for a bank node Bi, the payoff for its selected strategy
is:

payoff Bi
= −FC − α1VFP − α2NFP − βNFD , (1)

where VFP is the total value of false positive payments,
NFP is the number of false positive payments, and NFD is
the number of payments Bi flagged.

4.4 Strategies
Fraudster Node Strategies The goal of fraudster nodes
in the network is to maximize the value of fraud they can
commit. To achieve this, a fraudster node may take actions
to evade the fraud detectors or may attempt to take advan-
tage of imperfect fraud detectors such as by making many
payment attempts to increase the odds of success. We model
such ideas as 8 strategies, each comprised of two compo-
nents: payment frequency and payment value. Each of these
components is defined by an interval of possible values from
which the fraudster node’s behavior is drawn as described in
Section 4. The payment frequency can be either low or high.
The payment values are drawn from an interval considered:



• low: an interval with low values
• high: an interval with high values
• random: an interval over the combined low and high val-

ues
• alternate: alternates between a payment from the low in-

terval and a payment from the high interval

We refer to the fraudster node strategies in the format [fre-
quency, value]. For example [low, high] refers to the strategy
with payment attempts low in frequency and high in value.

Bank Node Strategies The strategic decision for a bank
node in our network is which payments to flag when in-
voking the fraud detector is costly. We consider the flag-
ging process a quick review of payments and thus do not use
customer-specific information such as the sender’s average
behavior which is often used for a more in-depth analysis
by the fraud detector. The strategies of the banks nodes are
modeled as logistic functions in the form of:

ρ =
1

1 + e−k(v−(cx))
, (2)

where v is the value of the payment being evaluated and k
is a game configuration. The logistic function returns ρ, the
probability the payment is flagged.

When determining whether a payment may be flagged
for review, bank nodes consider 3 aspects of the payment:
its value, the receiver, and the timing of the payment. If a
payment’s value is high, the bank node may prefer it be re-
viewed by the fraud detector, since bank nodes are liable for
fraud that occurs. Consider c = 1 in Equation 2 for now.
The value of x in the equation determines the tipping point
at which payments are considered high and are more likely
to be flagged. We consider 3 possible ways to calculate the
value of x:

• 500: the average of possible payment values in our model
• pay avg: the average payment value of all customer

nodes of the bank node
• credit est: an estimated payment value calculated using

the average ratio of payment value to initial credit line

The second part of the bank node’s strategy focuses on the
receiver and timing of the payment. Consider a payment sent
at time t to customer node Cj by a customer of bank node
Bi. The bank node considers the receiver of the payment to
be suspicious if Cj is in Bi’s perceived set (Cj ∈ PS i).
If the time in which the payment was sent is an active pe-
riod when fraudsters are more likely to attempt payments,
the bank node may also have reason for additional scrutiny.
While any one of these conditions many trigger the bank
node to favor review of the payment, if any combination or
all 3 are present, bank nodes may be more likely to want to
flag the payment. This notion forms the suspicion matrix,
which assigns a different c value for different combinations
of these suspicious events. As a result, the logistic function is
shifted such that if, for example, a payment is of high value
and the receiver is suspicious there is a greater change of the
payment going to the detector than if the payment value was
merely high.

Our strategies include 4 such matrices, each characterized
by the general behavior in the presence of suspicious condi-
tions.

• most: sends the majority of payments to the detector
solely based on the payment’s value

• reg: as more suspicious conditions are present, it be-
comes increasingly likely a payment goes to the detector

• rare sus: sends only payments with a high degree of sus-
picion to the detector

• rare: has a low probability of sending any payment to the
detector and only uses the payment’s value

To understand the difference in these strategies, consider
a payment of 800 units sent to a suspicious receiver during
an active period. The most, reg, and rare sus matrices return
a very high probability of flagging this payment, while the
rare matrix returns a very low probability. Now consider a
similar payment of 800 units sent to some non-suspicious
receiver, during a non-active period. The most matrix is still
very likely to flag the payment and the rare is still very un-
likely to flag the payment. However, with only a suspiciously
high payment value, the reg matrix flags this payment with
a probability less than in the original example payment. The
absence of other suspicion markers results in the rare sus
matrix returning a low probability for flagging this payment.
Finally, if the payment was sent to a suspicious receiver or
during an active period, only the reg matrix’s result would
change. With only one suspicious condition true, the pay-
ment would be sent to the detector with a likelihood between
the outcomes in the two previous examples.

This creates a total of 12 bank strategies, which we refer
to in the form [x, matrix]. For example, the strategy [500,
reg] refers to the strategy in which a bank node calculates
the probability a payment is flagged by considering all sus-
picious conditions that may occur and considers a payment
value high, absent other information, if it is greater than 500.

5 Empirical Game-Theoretic Analysis
We analyze the flagging game using EGTA, a method that
extensively simulates various strategy combinations called
strategy profiles, to identify Nash equilibria of a game. Each
strategy profile specifies the number of players employing
each strategy in the game. We test strategy profiles by first
assigning nodes in our network to play a strategy such that
the total number of nodes assigned to each strategy matches
the given strategy profile. Nodes play the game using their
assigned strategy and payoffs are calculated for each strat-
egy profile as described in Section 4. The payoff to nodes
for playing a strategy of a given strategy profile is calculated
as the sample average of payoffs observed over many sim-
ulation runs of the profile in the game. EGTA selects strat-
egy profiles to simulate using an iterative procedure with the
goal of identifying symmetric mixed-strategy Nash equilib-
rium as done in previous studies (Cassell and Wellman 2013;
Wellman, Kim, and Duong 2013)

We perform our experiments on games consisting of n =
200 customer nodes, b = 4 bank nodes (2 strong, 2 weak),
and m = 1 fraudster node. The game is played over T =



4, 320 time steps, broken into active and non-active time pe-
riods of length A = 72. For the bank node strategy’s logistic
function, we use k = 0.002. We use a value of α1 = 0.01 for
the transaction fee bank nodes obtain for routing payments.
We test 9 configurations of the flagging game defined by
α2 = {0.5, 1, 2} and β = {0.1, 1, 2}.

Our results show the fraudster node selects the strategy
[high, high], which results in frequent high value payment
attempts, in all game configurations. This suggests that in
this environment, the best strategy for the fraudster node is
not to try and disguise its payment attempts, but to take ad-
vantage of the inability for all payments to be detected. It
makes playing these odds worth while with large payment
values.

Bank nodes in our game tend to prefer to use strategies
with x set to 500 in all game configurations. Thus, absent
other information, bank nodes find that payments with val-
ues larger than 500 should be more likely to be flagged.
The prevalence of this indicates that knowledge of the pos-
sible payment values in the network alone may be enough to
judge if a payment value warrants suspicion. It may be that
the other methods that measure against average behavior are
less useful, as they are based on historical information rather
than present behaviors.

For suspicion matrices, we find that weak bank nodes pre-
fer the most matrix in all configurations, while the strong
bank nodes prefer to use the most matrix only when β < 2.
Thus, when costs are lower, all bank nodes flag most pay-
ments for review by the detectors. However, when costs are
high, strong bank nodes switch to preferring the rare sus
matrix, which requires a payment’s value, receiver, and tim-
ing to all be suspicious for the payment to have a high prob-
ability of being flagged. In this case, strong bank nodes are
willing to use their detectors, but in a limited capacity.

6 Equilibrium Analysis
To understand the effect strategic flagging has on the net-
work, we analyze outcomes when nodes play according to
the equilibria. In the event of a mixed strategy equilibrium,
nodes are randomly assigned to play a pure strategy by a
weighted draw according to the probability distribution de-
fined by the equilibrium. Outcomes are averaged over 100
runs of the game and in the event there are multiple equi-
libria of a game configuration, the results are also averaged
across equilibria. To aid our analysis, we also compare out-
comes to the case where bank nodes flag all payments and
the fraudster node plays according to the equilibrium strat-
egy [high, high].

We find the fraudster node in our game has a generally low
success rate of 35% in committing fraud, but is still able to
commit on average 23,083 units of fraud. This is attributed
to the fraudster’s strategy of attempting frequent, high value
payments. When banks send all payments to the detector, the
success of the fraudster is slightly lower with an average of
25% and the fraudster commits an average of 18,051 units
of fraud.

The existence of fraudster nodes imposes two costs on the
bank nodes: liability for fraudulent payments and costs in-
curred for adopting fraud detectors. In Figure 3, we analyze

Figure 3: The costs to weak bank nodes of fraud are pre-
dominantly due to missing fraudulent payments, while the
costs to strong bank nodes are more balanced.

the proportion of total costs (Equation 1) attributed to fraud
liability, FC in Equation 1, for each bank type. We find that
weak bank nodes in our game incur the majority of their
costs from fraud liability. This aligns with the their strategic
choice to flag the majority of payments, as the liability from
fraudulent payments remains the greatest cost in all game
configurations. Conversely, strong bank costs are balanced
between the two costs. Thus, strong bank nodes are able to
consider a trade-off in managing costs in this environment.

Fraud is not widely experienced by customers in the net-
work with an average of 12% of all customers, the majority
of whom belong to a weak bank, being impersonated by the
fraudster. In contrast, when bank nodes flag all payments an
average of 15% of all customers are victims of fraudster im-
personation. This phenomenon is explained by the behavior
of the fraudster node. Each time the fraudster is not suc-
cessful in a payment attempt, it chooses a new customer
to impersonate. The fraudster node’s success rate is lower
when all payments are flagged and thus, the fraudster node
switches which customer they are impersonating more often
in this case. As a result, customers may be slightly worse
off if experiencing attempted fraud is deemed costly for the
customer.



7 Conclusion
In this work, we propose the flagging problem in which
banks incur a non-negligible cost for using credit card fraud
detectors. As a result, banks must strategically flag pay-
ments for review by their detectors so as to balance the cost
of using the detector with potential losses from fraudulent
payments. To analyze the flagging problem’s affect on the
adoption of fraud detectors and patterns of fraud, we intro-
duce the flagging game played by fraudster and bank nodes
in a financial credit network model. The bank nodes in our
model differ in their detection capabilities, but all experience
the same costs for use of their detectors. Bank nodes con-
sider these costs when selecting a strategy that determines
the probability a given payment is flagged. Fraudster nodes,
with the singular goal of maximizing the amount of fraud
they can commit, select a strategy defining the frequency
and value of their payment attempts.

Our experiments show that fraudster nodes prefer to fre-
quently attempt payments of high value, likely to take ad-
vantage of the imperfect fraud detectors employed by bank
nodes. When costs for using the detector are low, all bank
nodes send most payments to the detector. However, when
costs become high, strong bank nodes select a strategy with
limited use of the fraud detector. Thus, with high costs,
strong bank nodes find the threat of fraud to be minor com-
pared to the incurred costs of invoking the detector. This is
confirmed in our analysis of costs of fraudulent payments in
the network where we find weak bank nodes costs attributed
primarily to not caught fraud and strong bank nodes expe-
riencing more balanced costs. Our analysis shows that cus-
tomer nodes may be a little worse off if all payments are
flagged by banks, as the fraudster node is forced to attempt
to impersonate more customers in the network.

While this work provides some insight into the flagging
problem and the resulting effects on patterns of fraud, ex-
pansions of the model could broaden our understanding of
these interactions. For example, we could explore additional
dimensions along which the flagging and fraudster decisions
are made. We might also consider expanding our study to
different cost schemes for banks and adding a penalty to
fraudster nodes for acquiring customer card details.
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