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Credit card fraud is a notorious issue that is only growing.
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Background: Credit Card Fraud

● A malicious actor obtains a customer’s credit card details and uses it 
to make unauthorized purchases
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Fraud detection comes at a cost
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Fraud detection comes at a cost

Payment

● Resources for analysis
● False positives (lost 

transaction fees)
● …
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Fraud detection comes at a cost

Payment

● Resources for analysis
● False positives (lost 

transaction fees)
● …

Customer Disruption

● Time for review
● False positives (lost 

business)
● …
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Fraud detection comes at a cost

?

Banks may choose to be strategic about which payments are sent for fraud detection.
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Fraud detection comes at a cost

flagging
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Fraud detection comes at a cost

Flagging problem: Which payments should be flagged for review?
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We explore strategic use of fraud detection by 
analyzing the flagging problem as a flagging 
game played by nodes in a payment network. 
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We explore strategic use of fraud detection by 
analyzing the flagging problem as a flagging 
game played by nodes in a payment network. 
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● Background agents
● Behavior is dictated by JP Morgan synthetic data set
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Banks Fraudsters

Strategies

Determines the probability a payment is 
flagged for detection

● Based on various attributes of the 
payment

● Logistic functions
● 12 total strategies

Payoff

● Cost of undetected fraud
● Cost of false positives
● Cost of resources for detection 
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Banks Fraudsters

Strategies

Determines the probability a payment is 
flagged for detection

● Based on various attributes of the 
payment

● Logistic functions
● 12 total strategies

Determines the value and frequency 
of payments

● 8 total strategies

Payoff

● Cost of undetected fraud
● Cost of false positives
● Cost of resources for detection 

● Value of undetected fraud



Analyzing the Flagging Game

● Network configuration
○ 4 banks: 2 strong, 2 weak
○ 1 fraudster
○ 200 customers

● Various game configurations defined by detection costs
○ Cost of false positives
○ Cost of fraud detection

● Employ empirical game-theoretic analysis (EGTA) to analyze the 
game

○ Uses extensive simulation of strategy profiles
○ Goal: identify Nash equilibria
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Weak

Strong
Recall: fraudsters target banks where 
they are more likely to be successful.

Intuition
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Weak

Strong

With fewer attempted fraudulent payments, strong banks are able to make a trade-off between costs 
of missing fraudulent payments and costs of detection.

Intuition
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Proportion of Total Costs Attributed to Fraud Detection 
Costs
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Proportion of Total Costs Attributed to Fraud Detection 
Costs

The cost of fraud detection is a larger proportion of total costs for strong banks explaining why 
increasing costs may affect the strategy of strong banks.
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Proportion of Total Costs Attributed to Fraud Detection 
Costs

Even at high costs, the dominant cost for weak banks is fraudulent payments helping to explain why 
they do not change their strategy.



Main Takeaways
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● Strong banks are more selective with fraud detection when associated 
costs are high

● Demonstrates the importance of considering other players’ 
capabilities in the decision

○ Strong banks depend on the existence of weak banks

● Suggests similar fraud-related decisions may also exhibit strategic 
interdependencies

○ Ex: changing investment in a detection system



Thank you
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Additional questions/comments: 
kamayo@umich.edu

Paper

https://kmayo.com/research.html


